Стандартная гипербола. Графики и основные свойства элементарных функций. Выбери верное соотношение

Подписаться
Вступай в сообщество «nloeda.ru»!
ВКонтакте:

Функция записывается в общем виде, как y = или f(x) =

y и x - это обратно пропорциональные величины , т.е. когда одна растет, другая уменьшается (проверьте, подставив числа в функцию)

В отличие от предыдущей функции, в которой x 2 всегда создает положительные значения, здесь мы не можем сказать, что - = , поскольку это будут совершенно противоположные числа. Такие функции называют нечетными .

Построим для примера график y =

Естественно, x не может быть равен нулю (x ≠ 0)

Ветви гиперболы лежат в 1-й и 3-й части координат.

Они бесконечно могут приближаться к осям абсцисс и ординат и так никогда их не достигнуть, даже если «x» станет равен миллиарду. Гипербола будет бесконечно близко, но все же так и не пересечется с осями (такая вот математическая печалька).

Построим график для y = -

​​​​​​​​​​​​​​И теперь ветви гиперболы находятся во второй и 4-й четверти частях координатной плоскости.

В итоге, между всеми ветвями можно наблюдать полную симметрию.

Данный методический материал носит справочный характер и относится к широкому кругу тем. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график . В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций .

Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики . Графики для чайников? Можно сказать и так.

По многочисленным просьбам читателей кликабельное оглавление :

Кроме того, есть сверхкраткий конспект по теме
– освойте 16 видов графиков, изучив ШЕСТЬ страниц!

Серьёзно, шесть, удивился даже я сам. Данный конспект содержит улучшенную графику и доступен за символическую плaту , демо-версию можно посмотреть . Файл удобно распечатать, чтобы графики всегда были под рукой. Спасибо за поддержку проекта!

И сразу начинаем:

Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей .

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат :

1) Чертим координатные оси. Ось называется осью абсцисс , а ось – осью ординат . Чертить их всегда стараемся аккуратно и не криво . Стрелочки тоже не должны напоминать бороду Папы Карло.

2) Подписываем оси большими буквами «икс» и «игрек». Не забываем подписывать оси .

3) Задаем масштаб по осям: рисуем ноль и две единички . При выполнении чертежа самый удобный и часто встречающийся масштаб: 1 единица = 2 клеточки (чертеж слева) – по возможности придерживайтесь именно его. Однако время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда масштаб уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко, но бывает, что масштаб чертежа приходится уменьшать (или увеличивать) еще больше

НЕ НУЖНО «строчить из пулемёта» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Декарту, а студент – не голубь. Ставим ноль и две единицы по осям . Иногда вместо единиц удобно «засечь» другие значения, например, «двойку» на оси абсцисс и «тройку» на оси ординат – и эта система (0, 2 и 3) тоже однозначно задаст координатную сетку.

Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа . Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярный масштаб 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем более мелкий масштаб 1 единица = 1 клеточка.

Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.

К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая то мажет, то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым.

Дополнительно : вИдение прямоугольной системы координат глазами аналитической геометрии освещается в статье Линейная (не) зависимость векторов. Базис векторов , подробную информацию о координатных четвертях можно найти во втором параграфе урока Линейные неравенства .

Трехмерный случай

Здесь почти всё так же.

1) Чертим координатные оси. Стандарт: ось аппликат – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.

2) Подписываем оси.

3) Задаем масштаб по осям. Масштаб по оси – в два раза меньше, чем масштаб по другим осям . Также обратите внимание, что на правом чертеже я использовал нестандартную «засечку» по оси (о такой возможности уже упомянуто выше) . С моей точки зрения, так точнее, быстрее и эстетичнее – не нужно под микроскопом выискивать середину клетки и «лепить» единицу впритык к началу координат.

При выполнении трехмерного чертежа опять же – отдавайте приоритет масштабу
1 единица = 2 клетки (чертеж слева).

Для чего нужны все эти правила? Правила существуют для того, чтобы их нарушать. Чем я сейчас и займусь. Дело в том, что последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но чертить их на самом деле жуть как неохота Эксель их начертит гораздо точнее.

Графики и основные свойства элементарных функций

Линейная функция задается уравнением . График линейной функций представляет собой прямую . Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:


А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:


При оформлении чертежа всегда подписываем графики .

Не лишним будет вспомнить частные случаи линейной функции:


Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа . В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками.

1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .

Построение прямой – самое распространенное действие при выполнении чертежей.

Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости .

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай:

Вспоминаем некоторые свойства функции .

Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы. Почему это так, можно узнать из теоретической статьи о производной и урока об экстремумах функции . А пока рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция не является чётной , но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Данный алгоритм построения образно можно назвать «челноком» или принципом «туда-сюда» с Анфисой Чеховой.

Выполним чертеж:


Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции () справедливо следующее:

Если , то ветви параболы направлены вверх .

Если , то ветви параболы направлены вниз .

Углублённые знания о кривой можно получить на уроке Гипербола и парабола .

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

График функции

Он представляет собой одну из ветвей параболы . Выполним чертеж:


Основные свойства функции :

В данном случае ось является вертикальной асимптотой для графика гиперболы при .

Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой .

Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу .

Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси .

Таким образом, ось является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

Функция является нечётной , а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

График функции вида () представляет собой две ветви гиперболы .

Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

Если , то гипербола расположена во второй и четвертой координатных четвертях .

Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков .

Пример 3

Построить правую ветвь гиперболы

Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

Детальную геометрическую информацию о рассмотренной линии можно найти в статье Гипербола и парабола .

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит:

График функции пока оставим в покое, о нём позже.

Основные свойства функции :

Принципиально так же выглядят графики функций , и т. д.

Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .
Выполним поточечный чертеж:

Если позабылось, что такое логарифм, пожалуйста, обратитесь к школьным учебникам.

Основные свойства функции :

Область определения :

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

Обязательно нужно знать и помнить типовое значение логарифма : .

Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость.

В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции . Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой .

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения : , то есть для любого значения «икс» существует значение синуса.

Область значений: . Функция является ограниченной : , то есть, все «игреки» сидят строго в отрезке .
Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения.

Презентация и урок на тему:
"Гипербола, определение, свойство функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Электронные учебные таблицы по геометрии. 7-9 классы
Электронные учебные таблицы по алгебре. 7-9 классы"

Гипербола, определение

Ребята, сегодня мы с вами изучим новую функцию и построим ее график.
Рассмотрим функцию: $y=\frac{k}{x}$, $k≠0$.
Коэффициент $k$ – может принимать любые действительные значения, кроме нуля. Для простоты начнем разбор функции со случая, когда $k=1$.
Построим график функции: $y=\frac{1}{x}$.
Как всегда начнем с построения таблицы. Правда в этот раз придется разделить нашу таблицу на две части. Рассмотрим случай, когда $x>0$.
Нам нужно отметить шесть точек с координатами $(x;y)$, которые приведены в таблице и соединить их линией.
Теперь посмотрим, что у нас получается при отрицательных х. Поступим тем же образом, отметим точки и соединим их линией. Два кусочка графика мы построили, давайте объединим их.

График функции $y=\frac{1}{x}$.
График такой функции называется "Гиперболой".

Свойства гиперболы

Согласитесь, график выглядит довольно-таки красиво, и он симметричен относительно начала координат. Если провести любую прямую, проходящую через начало координат, из первой в третью четверть, то она пересечет наш график в двух точках, которые будут одинаково отдалены от начала координат.
Гипербола состоит из двух, симметричных относительно начала координат, частей. Эти части называются, ветвями гиперболы.
Ветви гиперболы в одном направлении (влево и вправо) все больше и больше стремятся к оси абсцисс, но никогда не пересекут ее. В другом направлении (вверх и вниз) стремятся к оси ординат, но также никогда не пересекут ее (так как на ноль делить нельзя). В таких случаях, соответствующие линии называются асимптотами. График гиперболы имеет две асимптоты: ось х и ось у.

У гиперболы есть не только центр симметрии, но и ось симметрии. Ребята, проведите прямую $y=x$ и посмотрите, как разделился наш график. Можно заметить, что если часть, которая расположена выше прямой $y=x$, наложить на часть, которая располагается ниже, то они совпадут, это и означает симметричность относительно прямой.

Мы построили график функции $y=\frac{1}{x}$, но что будет в общем случае $y=\frac{k}{x}$, $k>0$.
Графики практически не будут отличаться. Будет получаться гипербола с теми же ветвями, только чем больше $k$, тем дальше будут удалены ветви от начала координат, а чем меньше $k$, тем ближе подходить к началу координат.

Например, график функции $y=\frac{10}{x}$ выглядит следующим образом. График стал "шире", отдалился от начала координат.
А как быть в случае отрицательных $k$? График функции $y=-f(x)$ симметричен графику $y=f(x)$ относительно оси абсцисс, нужно перевернуть его "вверх ногами".
Давайте воспользуемся этим свойством и построим график функции $y=-\frac{1}{x}$.

Обобщим полученные знания.
Графиком функции $y=\frac{k}{x}$, $k≠0$ является гипербола, расположенная в первой и третье (второй и четвертой) координатных четвертях, при $k>0$ ($k

Свойства функции $y=\frac{k}{x}$, $k>0$

1. Область определения: все числа, кроме $х=0$.
2. $y>0$ при $x>0$, и $y 3. Функция убывает на промежутках $(-∞;0)$ и $(0;+∞)$.



7. Область значений: $(-∞;0)U(0;+∞)$.

Свойства функции $y=\frac{k}{x}$, $k
1. Область определения: все числа кроме $х=0$.
2. $y>0$ при $x 0$.
3. Функция возрастает на промежутках $(-∞;0)$ и $(0;+∞)$.
4. Функция не ограничена ни сверху, ни снизу.
5. Наибольшего и наименьшего значений нет.
6. Функция непрерывна на промежутках $(-∞;0)U(0;+∞)$ и имеет разрыв в точке $х=0$.
7. Область значений: $(-∞;0)U(0;+∞)$.

Функцией Коэффициент k может принимать любые значения, кроме k = 0. Рассмотрим сначала случай, когда k = 1; таким образом, сначала речь пойдет о функции .

Чтобы построить график функции , поступим так же, как и в предыдущем параграфе: дадим независимой переменной х несколько конкретных значений и вычислим (по формулe ) соответствующие значения зависимой переменной у. Правда, на этот раз удобнее проводить вычисления и построения постепенно, сначала придавая аргументу только положительные значения, а затем - только отрицательные.

Первый этап. Если х = 1, то у = 1 (напомним, что мы пользуемся формулой );

Второй этап.

Короче говоря, мы составили следующую таблицу:

А теперь объединим два этапа в один, т. е. из двух рисунков 24 и 26 сделаем один (рис. 27). Это и есть график функции его называют гиперболой.
Попробуем по чертежу описать геометрические свойства гиперболы.

Во-первых , замечаем, что эта линия выглядит так же красиво, как парабола, поскольку обладает симметрией. Любая прямая, проходящая через начало координат О и расположенная в первом и третьем координатных углах, пересекает гиперболу в двух точках, которые лежат на этой прямой по разные стороны от точки О, но на равных расстояниях от нее (рис. 28). Это присуще, в частности, точкам (1; 1) и (- 1; - 1),

И т. д.Значит - О центр симметрии гиперболы. Говорят также, что гипербола симметрична относительно начала координат .

Во-вторых , видим, что гипербола состоит из двух симметричных относительно начала координат частей; их обычно называют ветвями гиперболы.

В-третьих, замечаем, что каждая ветвь гиперболы в одном направлении подходит все ближе и ближе к оси абсцисс, а в другом направлении - к оси ординат. В подобных случаях соответствующие прямые называют асимптотами.

Значит, график функции , т.е. гипербола, имеет две асимптоты: ось х и ось у.

Если внимательно проанализировать построенный график, то можно обнаружить еще одно геометрическое свойство, не такое очевидное, как три предыдущих (математики обычно говорят так: «более тонкое свойство»). У гиперболы имеется не только центр симметрии, но и оси симметрии.

В самом деле, построим прямую у = х (рис. 29). А теперь смотрите: точки расположены по разные стороны от проведенной прямой , но на равных расстояниях от нее. Они симметричны, относительно этой прямой. Тоже можно сказать о точках , где, конечно Значит, прямая y =x - ось симетрии гиперболы (равно как и y = -x)


Пример 1. Найти наименьшее и наибольшее значения функции а) на отрезке ; б) на отрезке [- 8, - 1].
Решение, а) Построим график функции и выделим ту его часть, которая соответствует значениям переменной х из отрезка (рис. 30). Для выделенной части графика находим:

б) Построим график функции и выделим ту его часть, которая соответствует значениям переменной х из отрезка [- 8, - 1] (рис. 31). Для выделенной части графика находим:


Итак, мы рассмотрели функцию для случая, когда k= 1. Пусть теперь k - положительное число, отличное от 1, например k = 2.

Рассмотрим функцию и составим таблицу значений этой функции:

Построим точки (1; 2), (2; 1), (-1; -2), (-2; -1),

на координатной плоскости (рис. 32). Они намечают некоторую линию, состоящую из двух ветвей; проведем ее (рис. 33). Как и график функции , эту линию называют гиперболой.

Рассмотрим теперь случай, когда k < 0; пусть, например, k = - 1. Построим график функции (здесь k = - 1).

В предыдущем параграфе мы отметили, что график функции у = -f(x) симметричен графику функции у = f(x) относительно оси х. В частности, это значит, что график функции y = - f(x) симметричен графику функции у = f(x) относительно оси x. В частности, это значит, что график , симетричен графику односительно оси абсцисс (рис. 34) Таким образом, мы получим гиперболу, ветви которой расположены во втором и четвертом координатных углах.

Вообще, графиком функции является гипербола, ветви которой расположены в первом и третьем координатных углах, если k > 0 (рис. 33), и во втором и четвертом координатных углах, если k < О (рис. 34). Точка (0; 0) - центр симметрии гиперболы, оси координат - асимптоты гиперболы.

Обычно говорят, что две величины х и у обратно пропорциональны, если они связаны соотношением ху = k (где k - число, отличное от 0), или, что то же самое, . По этой причине функцию называют иногда обратной пропорциональностью (по аналогии с функцией у - kx, которую, как вы, наверное,
помните, называют прямой пропорциональностью); число k - коэффициент обратной пропорциональности .

Свойства функции при k > 0

Описывая свойства этой функции, мы будем опираться на ее геометрическую модель- гиперболу (см., рис. 33).

2. у > 0 при х>0;у<0 при х<0.

3. Функция убывает на промежутках (-°°, 0) и (0, +°°).

5. Ни наименьшего, ни наибольшего значений у функции

Свойства функции при k < 0
Описывая свойства этой функции, мы будем опираться на ее геометрическую модель - гиперболу (см. рис. 34).

1. Область определения функции состоит из всех чисел, кроме х = 0.

2. у > 0 при х < 0; у < 0 при х > 0.

3. Функция возрастает на промежутках (-оо, 0) и (0, +оо).

4. Функция не ограничена ни снизу, ни сверху.

5. Ни наименьшего, ни наибольшего значений у функции нет.

6. Функция непрерывна на промежутках (-оо, 0) и (0, +оо) и претерпевает разрыв при х = 0.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

← Вернуться

×
Вступай в сообщество «nloeda.ru»!
ВКонтакте:
Я уже подписан на сообщество «nloeda.ru»