Скачать технический паспорт вальцовый станок а1 бзн. Вальцовые станки типа А1-БЗН. Техническая характеристика станков типа А1-БЗН

Подписаться
Вступай в сообщество «nloeda.ru»!
ВКонтакте:

Вальцовые станки типа А1-БЗН

Вальцовые станки типа A1-БЗН выпускают в трех модификациях, для различных мукомольных заводов. Станки устанавливают группами по четыре-пять машин с общими капотами. Набор станков различной формы исполнения и последовательность их монтажа в каждой группе регламентированы проектом типового мукомольного завода. Характерно, что электродвигатели этих вальцовых станков размещают на специальной площадке под междуэтажным перекрытием.

Вальцовый станок типа A1-БЗН имеет 21 форму исполнения.

Вальцовый станок А1-БЗ-2Н используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка ЗМ-2. Станок А1-БЗ-2Н отличается от станка AI-БЗН наличием индивидуальных капотов и возможностью установки электродвигателя на том же перекрытии, где расположен станок, а также под перекрытием на специальной площадке. Станок имеет 39 форм исполнения.

Вальцовый станок Al-БЗ-ЗН используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка БВ-2.

Он отличается от описанных выше станков наличием устройства для верхнего забора измельченного продукта. Это устройство состоит из приемных труб для отсоса продукта непосредственно после измельчения из бункеров под вальцами, системы пневмотранспорта. Вальцовый станок А1-БЗ-ЗН имеет 22 формы исполнения.

Вальцовый станок А1-БЗН (рис.) состоит из следующих основных сборочных единиц: мелющих вальцов, привода вальцов, меж-вальцовой передачи, механизмов настройки и параллельного сближения вальцов, системы привала - отвала вальцов, приемно-питающего устройства и станины.

:
1 - приемная труба; 2 - сигнализатор уровня продукта; 3 - заслонка; 4 - винтовое устройство; 5 - рукоятка; 6 - штурвал; 7 - стопорная головка; 8 - нож-очиститель; 9 - выпускной бункер; 10 - щетка-очиститель; 11, 12 - медленно-и быстровращающиеся вальцы; 13 - питающий валок; 14 - шнек; 15 - шторки-датчики

Мелющие вальцы устанавливаются парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. Длина вальца - 1000 мм, а номинальный диаметр бочки - 250 мм. Масса полого вальца примерно на 30% меньше цельного - 270 кг.

Валец представляет собой двухслойную полую цилиндрическую бочку, диаметр внутренней полости которой - 158 мм, глубина наружного отбеленного слоя (рабочего) - 10 мм. С обоих концов бочки запрессованы цапфы. На конической части цапфы установлены подшипники. Концевая цилиндрическая часть служит для насадки приводного шкива или шестерен межвальцовой передачи. В цапфы быстровращающегося вальца вставлены трубки с охлаждающей водой.

Мелющие вальцы вращаются в двухрядных роликовых сферических подшипниках, имеющих коническую посадку внутренних обойм. Подшипник демонтируют с конической части цапфы гидравлическим съемником, который нагнетает масло через отверстие в цапфе в место сопряжения с поверхностью внутренней обоймы подшипника. Корпуса подшипников верхнего вальца прикреплены к боковой части станины четырьмя болтами, а корпуса подшипников нижнего подвижного вальца имеют свободные концы (локти), опирающиеся на предохранительные пружины. Корпус нижнего вальца выполнен разъемным, что позволяет снимать вальцы вместе с подшипниками.

Устройство для охлаждения верхнего быстровращающегося вальца работает следующим образом (рис.). Валец 6 охлаждается водой, поступающей через трубку 5, которая введена свободным концом через осевое отверстие в цапфе во внутреннюю полость вальца. Трубка имеет два отверстия для разбрызгивания воды внутри вальца. Открытый конец трубки жестко соединен с корпусом 7. Внутри корпуса в подводящем водопроводе установлен пробковый кран, регулирующий подачу воды во внутреннюю полость вальца. Теплая вода отводится через кольцеобразный зазор между неподвижной трубкой 5 и вращающейся бронзовой втулкой 2 с коническим раструбом. Отработавшая вода поступает в сливную камеру, отводится по трубе в охлаждающее устройство и возвращается в систему рециркуляции. Нагретую воду можно использовать для увлажнения зерна в подготовительном отделении мукомольного завода.

Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу теплоты. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продуктов после измельчения - 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание и чрезмерное измельчение оболочек, а также перегрев продуктов размола. Расход воды на охлаждение не превышает 0,6 м3/ч для одного вальцового станка. Однако в настоящее время на практике постепенно отказываются от водяного охлаждения вальцов по причинам, связанным с экономическими и дополнительными трудозатратами.

1 - корпус; 2 - бронзовая втулка; 3 - шестерни межвальцовой передачи; 4 - подшипник; 5 - трубка; 6 - цапфа; 7 - валец

Ведущие зарубежные фирмы достигают практически тех же результатов внедрением активной системы аспирации и др.

В условиях производства необходимо контролировать температуру нагрева вальцов и измельченного продукта. При увеличении температуры продукта выше нормы после прохождения его через вальцовый станок, необходимо выявить причину нарушения технологического процесса: износ рабочей поверхности вальцов, непараллельность вальцов, неравномерность заполнения мелющей щели, нарушение в системе охлаждения вальцов и др.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных, 12-й размольной установлены щетки 10 из полимерного материала, а гладкие вальцы очищаются ножами 8 (см. рис.). Механизм привода вальцов состоит из привода верхнего вальца и межвальцовой передачи. Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив, который устанавливается на правой цапфе верхнего быстровращающегося вальца. Диаметр ведущего шкива для рифленых вальцов составляет 150 мм, а для гладких - 132 мм.

Предусмотрено два варианта установки электродвигателей: непосредственно на перекрытии, где располагается вальцовый станок, и под перекрытием на специальной площадке (для станка А1-БЗН подходит только второй вариант).

Межвальцовая передача представляет собой редуктор, состоящий из двух косозубых шестерен шириной 55 мм. Большая чугунная шестерня и малая стальная установлены, соответственно, на левых концах цапф нижнего и верхнего вальцов. Обе шестерни вращаются в масле, залитом в кожух 10 (рис.).

1 - горловина; 2 - шкив; 3 - пневмоперекчючатель привала-отвала; 4 - пружина заслонки; 5 - преобразователь сигнала; 6 - шкив питающего механизма; 7 - рукоятка переключения скоростей; 8 - шестерни межвальцовой передачи; 9 - корпус системы охлаждения; 10 - коясух межвальцовой передачи; 11 - корпус подшипника; 12 - блок реле; 13 - конец (локоть) свободный подвижного корпуса подшипника; 14 - фильтр воздушный; 15 - клапан электромагнитный; 16 - воздухопроводы; 17 - пружина предохранительная; 18 - пневмоцилиндр; 19 - кнопки «Пуск», «Остановка»; 20 - станина; 21 - подвеска; 22 - вал эксцентриковый; 23 - штурвал механизма настройки параллельности вальцов; 24 - рукоятка точной настройки межвальцового зазора; 25 - тяга; 26 - винт ограничительный; 27- цапфа

Настройка вальцов на параллельность производится двумя механизмами винтового типа, сопряженными с механизмом параллельного сближения. При вращении штурвала по часовой стрелке через систему рычагов подвеска тянет локоть подвижного подшипника вверх и сближает вальцы на одном конце, при вращении штурвала против часовой стрелки подвеска опускается, поворачивает рычаг вокруг эксцентрикового вала и отводит нижний валец. Стопорной головкой 7 (см. рис.) с помощью рукоятки фиксируется установленное положение нижнего вальца. Такая же операция производится и для другого конца вальца.

Максимальное изменение зазора между вальцами с помощью механизма настройки параллельности составляет 4,4 мм. Чувствительность механизма характеризуется изменением зазора за один оборот штурвала и равна 0,22 мм. Если измельчение по длине вальцов неодинаково, то вращением штурвалов 6 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами.

Механизм параллельного сближения вальцов предназначен для точной установки рабочего зазора. Требуемый рабочий зазор между вальцами устанавливается вращением рукоятки 5, которая через систему рычагов разворачивает эксцентриковый вал так, чтобы соответственно приблизить или отвести нижний валец. Максимальное изменение зазора между вальцами механизмом параллельного сближения составляет 1,2 мм, а чувствительность механизма за один оборот рукоятки - 0,06 мм.

Система привала - отвала вальцов обеспечивает автоматическое и ручное управление этими операциями. В рабочем режиме функционирует автоматическое управление привалом - отвалом вальцов. Ручной привал и отвал вальцов выполняется подъемом и опусканием рукоятки 5 (см. рис.). Усилие, прикладываемое к рукоятке, передается на эксцентриковый вал и далее по схеме, рассмотренной выше, происходит привал или отвал. Положение привала вальца фиксируется защелкой, которая зацепляется с упором, запрессованным в боковине станка.

При попадании в вальцовый станок инородных тел размером до 5 мм предохранительная пружина обеспечивает безопасное их прохождение в результате грубого отвала нижнего вальца.

Автоматическое управление привалом - отвалом вальцов включает две схемы: электрическую, измеряющую уровень продукта под питающим механизмом и вырабатывающую соответствующий электрический сигнал управления, и пневматическую - воздействующую через систему рычагов на эксцентриковый вал, который обеспечивает привал-отвал по схеме, рассмотренной выше.

Электрическая схема состоит из сигнализатора уровня продукта, блока реле 72 (рис.) и электромагнитного клапана 75. Пневматическая схема состоит из входного фильтра 14, пневмопереключателя 3 и пневмоцилиндра 18.
Сигнализатор уровня продукта представляет собой конденсатор с определенной емкостью. Изменение уровня продукта в приемной трубе станка изменяет емкость сигнализатора и соответственно управляющий сигнал, который преобразуется и усиливается в схеме электронного блока. При определенной величине сигнал вызывает замыкание контактов реле. Ток напряжением 220 В подается на обмотки электромагнитного клапана 75, который открывает доступ сжатому воздуху под давлением 0,50 МПа к поршню пневмоцилиндра 18. Поршень поднимает шток и через систему рычагов разворачивает эксцентриковый вал 22 на привал нижнего вальца.

При уменьшении уровня продукта в приемной трубе до определенного предела управляющий сигнал по величине становится недостаточным для удержания контактов реле в замкнутом состоянии. Клапан перекрывает доступ сжатому воздуху в пневмоцилиндр, поршень со штоком опускается и механизм срабатывает на отвал вальца. При работе станка в автоматическом режиме в экстренных случаях возможен принудительный отвал вальцов ручным пневмопереключателем 3.

Приемно-питающее устройство состоит из приемной трубы, валкового питающего механизма с приводом и заслонкой и системы регулирования подачи продукта.

Приемная труба представляет собой стеклянный цилиндр, установленный в горловине вальцового станка. Приемные трубы вальцовых станков, обслуживающие две различные технологические системы, разделены вертикальной перегородкой, которая обеспечивает автономное питание каждой половины станка. В каждой половине трубы установлен сигнализатор уровня продукта.

Механизм подачи продукта (рис.) в зависимости от физикомеханических свойств исходного продукта на различных технологических системах имеет семь форм исполнения и включает в различных сочетаниях валковый питатель, редуктор, заслонку и привод.

Питатель может быть выполнен в трех модификациях: дозирующий валок с промежуточными валками (для I драной системы), дозирующий валок со шнеком (для остальных драных систем) и дозирующий и распределительный валки (для размольных систем). На поверхности дозирующего валка нанесены продольные рифли с уклоном 1°30". В зависимости от технологической системы их может быть 50, 30 или 20. Распределительный валок имеет 50 поперечных рифлей с шагом 2 мм. Шнек выполняется в виде вала с лопастями. Промежуточный валик не имеет нарезки, он изолирован от зоны подачи продукта и выполняет лишь кинематические функции.

Все питатели типа валка со шнеком и двухвалковые для 11-й и 12-й размольных систем имеют редукторы для четырехпозиционного регулирования скоростей дозирующего валка. Скорость вращения валка питающего механизма устанавливают так, чтобы слой продукта был тонким и распределялся по всей его длине.

1 - рукоятка; 2 - шнек; 3 - пружина; 4, 5 - кулачковые полумуфты; 6 - шкив; 7 - плоскоременная передача; 8 - быстровращающийся валец; 9 - тяга с поводком; 10 - валок; 11 - блок шестерен

Заслонка 3 (см. рис.) образует с дозирующим валком питающий зазор, который устанавливают вручную с помощью винтового устройства 4 и регулируют автоматически. Автоматическое регулирование питающего зазора каждой половины станка осуществляется с помощью двух шарнирно подвешенных гофрированных шторок-датчиков 15 и системы рычагов. Чем больше поступает в станок продукта, тем больше питающий зазор, и наоборот. Для каждой технологической системы с помощью ограничительного винта вручную устанавливают диапазон автоматического перемещения заслонки.

Привод механизма подачи продукта (см. рис.) осуществляется плоскоременной передачей 7 от ступицы шкива привода мелющих вальцов. Вращение передается на шкив 6, на одном валу с которым установлено две кулачковые полумуфты 4, 5, которые входят в зацепление одновременно с привалом медленновращающегося вальца. Питающие валки установлены в подшипниках скольжения.

Станина вальцового станка разборная, чугунная, состоит из двух боковин, двух продольных стенок и траверсы. Детали станины соединены между собой болтами. В боковинах сделаны отверстия и проемы для размещения подвижных и неподвижных сборочных единиц станка. Станок полностью закрыт капотом, который изготовлен из четырех съемных нижних и четырех откидных верхних стальных штампованных ограждений.

Работа станка начинается с пуска электродвигателя, от которого клиновыми ремнями вращение передается сначала шкиву верхнего вальца, а затем через межвальцовые шестерни - нижнему вальцу. От ступицы шкива верхнего вальца вращение плоским ремнем передается шкиву питающих валков, а от него - ведущей полумуфте кулачковой муфты.

При заполнении приемной трубы продуктом емкостной сигнализатор уровня обеспечивает замыкание цепи электромагнитного клапана, который соединяет магистраль сжатого воздуха с рабочей полостью пневмоцилиндра. При этом поршень поднимает шток вверх, а от него через систему рычагов разворачивается эксцентриковый вал, который перемещает вверх свободные концы (локти) подшипников нижнего вальца, в результате чего происходит привал мелющих вальцов.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через шестерни передается питающим валкам. Под действием массы продукта датчик питания через систему рычагов поворачивает заслонку, и через питающий зазор начинает поступать продукт. При прекращении поступления продукта в приемную трубу станка электронная схема размыкает цепь электромагнитного клапана и через систему рычагов происходит отвал мелющих вальцов.


Измельчение зерна и продуктов его размола


Назначение вальцовых станков для измельчения зерна

Процесс измельчения зерна и промежуточных продуктов при производстве муки является одной из главных и наиболее энергоемких операций, так как он в значительной мере влияет на выход и качество готовой продукции. Технологические приемы и машины, применяемые для измельчения, в значительной степени определяют технико-экономические показатели мукомольного завода.

На мукомольных заводах с комплектным оборудованием размол зерна и промежуточных продуктов производится на вальцовых станках типа А1-БЗН. Вальцовый станок - первая технологическая машина размольного отделения, от которой в значительной мере зависит производительность, эффективность и стабильность работы последующего технологического и транспортного оборудования.

Процесс разрушения твердых тел на части под действием ударных или ударно-истирающих воздействий, а также сжатия и сдвига называется измельчением. Основные требования, предъявляемые к процессу измельчения при сортовых помолах зерна пшеницы, сводятся к получению максимального количества промежуточных продуктов в виде крупок и дунстов высокого качества, обогащению полученных промежуточных продуктов, последующему их измельчению в муку и вымолу оболочек из оставшихся частиц эндосперма. От правильного измельчения зависит рациональное использование перерабатываемого зерна, качество вырабатываемой муки, расход электроэнергии на получение муки, производительность измельчающих машин и технико-экономические показатели работы мукомольного завода.

Рассматривая измельчение зерна как основу технологического процесса на мукомольном заводе, не следует забывать, что оно органически связано с предыдущими и последующими процессами переработки зерна, и в первую очередь, с сортированием, без которого невозможно современное производство сортовой муки. Измельчители являются основным и наиболее энергоемким видом технологического оборудования.

Основные факторы, влияющие на процесс измельчения зерновых продуктов в вальцовых станках - структурно-механические и технологические свойства зерна, кинематические и геометрические параметры пар-ноработающих вальцов и нагрузка на машину. Среди показателей, характеризующих структурно-механические и технологические свойства зерна, наибольшее влияние на эффективность процесса измельчения в вальцовых станках оказывают стекловидность и влажность зерновой массы.

Стекловидность характеризует консистенцию эндосперма зерна, его структурно-механические и технологические свойства, т. е. поведение зерна в процессе измельчения, его количественные, качественные и энергетические показатели. Зерно с более высокой стекловидностью обладает повышенной прочностью и требует больших энергетических затрат на измельчение.

Влажность зерна также оказывает существенное влияние на эффективность процесса измельчения. Установлено, что с повышением влажности зерна возрастает его сопротивляемость разрушению, снижается микротвердость и повышается удельный расход электроэнергии. При повышении влажности зерна от 14 до 16,5% снижается выход крупных фракций промежуточных продуктов на крупообразующих системах, снижается зольность при одновременном росте удельного расхода электроэнергии на измельчение. Учитывая существенное улучшение качества промежуточных продуктов и муки вследствие меньшей дробимости оболочек, следует стремиться к повышению влажности перерабатываемого зерна до возможных пределов.

К кинематическим параметрам относят окружные скорости быстро- и медленновращающегося вальцов v6 и vM и их отношение К = vq/vm.

К геометрическим параметрам вальцового станка относят: величину межвальцового зазора, рабочую поверхность вальцов (рифленая или микрошероховатая), характеристику поверхности рифленых вальцов (число рифлей на единицу длины окружности вальца, уклон рифлей, профиль рифлей, взаимное расположение рифлей парноработающих вальцов, диаметр вальцов, длину вальцов).

Окружные скорости вальцов оказывают основное влияние на скорость приложения усилий от вальцов к измельчаемому продукту, а также на скорость обработки продукта в рабочей зоне вальцов. Окружные скорости вальцов определяют скорость движения измельчаемых частиц в рабочей зоне вальцов.

При повышении окружных скоростей с 4 до 10 м/с (для быстров-ращающегося вальца) увеличивается степень измельчения зерновых продуктов на всех этапах. При этом качество извлекаемых промежуточных продуктов и муки по зольности ухудшается, а удельный расход электроэнергии возрастает. Особенно заметно ухудшается качество муки в системах, обрабатывающих продукты, содержащие оболочки. Это объясняется повышением скорости деформирования всех измельчаемых продуктов, в том числе и оболочечных, которые попадают в извлекаемые продукты и увеличивают их зольность. Окружная скорость быст-ровращающихся рифленых вальцов в станках типа А1-БЗН составляет 5,5-6,0 м/с, а микрошероховатых - 5,15-5,40 м/с.

Отношение окружных скоростей вальцов связано с величиной сдвигающих усилий и соотношением сдвигающих и сжимающих усилий в рабочей зоне вальцов. С увеличением отношения окружных скоростей вальцов возрастают усилия, оказывающие на измельчаемый продукт со сторо-
ны вальцов. С возрастанием величины К повышается степень измельчения зерновых продуктов на всех этапах, зольность же извлекаемых продуктов несколько увеличивается, особенно при измельчении продуктов, содержащих значительное количество оболочек. На драных системах вальцовых станков типа А1-БЗН значение К равно 2,5, а на размольных - 1,25.

Величина межвальцового зазора при сортовых помолах пшеницы изменяется от 0,05 до 1,0 мм и является единственным оперативно регулируемым параметром процесса измельчения. Зазор между вальцами устанавливают в зависимости от физико-механических свойств измельчаемого продукта и места в технологической схеме (процессы драной, шлифовочный и размольный). Он колеблется в сравнительно широких пределах: от 0,05 до 1,00 мм. Так, например, на I драной системе номинальный зазор между приваленными невращающимися вальцами должен быть 0,8-1,0 мм, на II драной системе - 0,6-0,8 мм, на размольных системах с рифлеными вальцами - 0,1-0,2 мм, а на остальных размольных системах - 0,05 мм.

Важное условие выполнения всех последовательных этапов измельчения зерна - это обеспечение заданных параметров рифленых и микрошероховатых поверхностей вальцов.

В технологическом процессе размола зерна в вальцовых станках типа А1-БЗН для всех драных систем и 12-й размольной системы используют рифленые вальцы, а для всех остальных - микрошероховатые. Для каждой технологической системы «Правилами организации и ведения технологического процесса на мукомольных предприятиях» определены: профиль и число рифлей, их взаимное расположение, уклон, а также соответствующие параметры шероховатости.

Рифли нарезают на шлифовально-рифельном станке, а микрошеро-ховатую поверхность наносят струей сжатого воздуха и абразивного материала на станке со специальным пескоструйным устройством.

В настоящее время основным изготовителем отечественных вальцовых станков является машиностроительный завод ОАО «Мельинвест», который освоил изготовление и обработку поверхности вальцов. От их качества во многом зависят технико-экономические показатели работы мукомольного завода в целом. На заводе успешно функционирует рациональная система нарезки рифлей и матирования вальцов, как для станков собственного производства, так и для станков других производителей. Здесь осуществляют перенарезку износившихся поверхностей вальцов различных конструкций, изготавливают комплекты вальцов для мельниц различной производительности.

Для обеспечения высокого качества вальцов двухслойные чугунные бочки изготавливают из центробежного литья. Рабочий слой вальцов (глубиной не менее 20 мм) выполняют из белого износостойкого чугуна. Твердость этого слоя для рифленых вальцов составляет 530-550 НВ (единиц Бринелля), или 75-80 HS (единиц Шора).

Производительность пары вальцов зависит от их длины, зазора между ними, скорости прохождения измельчаемого продукта и его объемной массы, а также степени использования зоны измельчения.

Для расчета оборудования и общей характеристики процесса измельчения в вальцовых станках вводят нормативный показатель средней удельной нагрузки, который определяется отношением суточной производительности размольного отделения мукомольного завода к общей длине мелющей линии. Для вальцовых станков типа А1-БЗН эта нагрузка составляет 70 кг/(см*сут).

Вальцовые станки типа БЗН

Применяют в составе комплектного оборудования на мукомольных заводах с увеличенным выходом муки высоких сортов и устанавливают группами по четыре и пять машин с общими капотами. Электродвигатели привода станков располагают под перекрытием этажа для взрывобезопасности.

Основные конструктивные эле­менты станка: станина (рис. 46), мелющие вальцы 14, 18, рас­положенные под углом 30° к горизонтали; приемно-питающее устройство; механизм параллельного сближения вальцов; меха­низм настройки параллельности вальцов, привод мелющих валь­цов и питающих валков, система охлаждения быстровращающи.хся вальцов, системы пневмоэлектронного управления механизмом привала-отвала медленно вращающегося вальца и привода питающих валков.

Мелющие вальцы выполнены в виде бочки с запрессованными в нее с обеих сторон цапфами. Твердость поверхности бочек для рифленых и гладких вальцов соответственно составляет 490-530 и 450-490 НВ. Бочки и цапфы полые.

Устройства охлаждения быстровращающегося вальца. Консольная трубка 1 подаёт воду в пустотелый валец. Отвод воды из вальца в корпус обеспечивает насадка, ввернутая в резьбовое отверстие цапфы.

С т а н и н а. Ее несущая конструкция - две чугунные боко­вины 1, соединенные нижней 19 и верхней траверсами 10. Последняя служит дном питающей коробки. В верхней части станины закреплены лицевые панели 13, горловина 9 и приемная труба 8.

Питающий механизм . Его назначение - непрерывно и равномерно подавать продукт в рабочую зону по всей длине ме­лющих вальцов, обеспечивать возможность регулирования коли­чества продукта, прекращения его подачи в момент поступления в зону измельчения, близкую к скорости медленно вращающегося вальца. Питающий механизм включает дозирующий 11 и распределительный 12 валики, винтовой конвейер и распреде­лительный валик или один дозирующий валик. Зазор между заслонкой и дозирующим валиком устанав­ливается в зависимости от количества поступающего продукта автоматически или вручную так, чтобы обеспечить подачу про­дукта по всей длине мелющих вальцов.

а -- питающий механизм с винтовым конвейером и валиком, рифленый рельеф мелющих пллыиш и очистил их щетками; б - двухвалковый питающий механизм, шероховатый рельеф мелющих валыюп и очистка их скребками: 1 - боковина: 2 - щетка; 3 - эксцент­риковый пал; 4 - питающая заслонка; 5 - рычаг; 6 - датчик; 7 - зонд емкостного сигна­лизатора; 8 - приемный цилиндр; 9 - горловина; 10 - верхняя средняя траверса: 11. 12 - питающие валики; 13 - верхняя передняя панель; 14, I8- мелющие вальцы; 15 - рукоят­ка ручного привала: 16 - скребки; 17 - штурвал механизма регулирования параллельно­сти вальцов; 19 - нижняя лицевая траверса; 20-бункер

Механизм параллельного сближения валь­цов . для регулирования зазора между ними и привала-отвала, чтобы предупредить истирание их рифленой поверхности, учитывая, что рабочий зазор между вальца­ми колеблется в пределах 0,05. ..1,0 мм.

Привал и отвал медленновращающегося вальца производит­ся автоматически в зависимости от наличия или отсутствия про­дукта в приемной трубе вальцового станка, при помощи электронного сигнализатора уровня продукта. Он использует ёмкостный датчик присутствия продуктов в питающей трубе, что сильно отличает устройство автоматики. По мере накопления продукта в при­емной трубе изменяется электрическая емкость зонда, которая преобразуется электрической схемой его головки в напряжение, управляющее работой электронного блока. При этом срабаты вает электропневматический клапан, включается питание пневмоцилиндра, который смещает через рычажную систему эксцентриковый вал привала-отвала. Одновременно включится механизм привода питающих валиков и откроется питающая заслонка. Грубый привал вальцов вручную производят нажимом на головку винта 7, рычаг 3 поворачивает эксцентри­ковый вал1.

Механизм настройки вальцов на параллель­ность.

Приводной механизм. В вальцовых станках применя­ют индивидуальный привод. Быстровращающийся валец соеди­няют с электродвигателем, установленным под перекрытием вальцового этажа через клиноременную передачу. Медленно-вращающийся валец применяют передаточный механизм в виде косозубой передачи, заключенной в кожухе.

Привод питающих валков осуществляется плоскоременной передачей от ступицы приводного шкива станка.

В вальцовых станках А1-БЗН, А1-БЗ-2Н и А1-БЗ-ЗН выпускают с разного исполнения с настройкой на конкретный режим работы. Устанавливают вальцы с рифлями, отличающимися: по профилю, по плотности нарезки, по уклону. Кроме того, исполнение вальцовых станков отличается устройст­вом подачи зерна, учитывающим его особенности, мощностью элек­тродвигателей, типом очистителей.

Водяное охлаждение быстровращающегося вальца позволяет под­держивать температуру поверхности вальцов на заданном уровне и одновременно охлаждать подшипники.

Вальцовые станки А1-БЗ-2Н и А1-БЗ-ЗН. В отличие от стан­ка Л1-БЗН станок А1-БЗ-2Н имеет индивидуальные капоты. Привод быстровращающегося вальца осуществляется через клнпорсмснпую передачу от электродвигателя, который может быть установлен как на перекрытии вальцового этажа, так и под ним. Вальцовые станки А1-БЗ-2Н устанавливают на новых мукомольных заводах сортового помола пшеницы и на реконст­руируемых заводах взамен вальцовых станков ЗМ-2, в которых измельченный продукт выводится самотеком из бункера под давлением к тшевмопрпемнпку.

Применение вальцового станка А1-БЗ-ЗН такое же, как н вальцового станка А1-БЗ-2Н, но ими заменяют вальцовые станки БВ-2. Измельченный продукт в станке А1-БЗ-ЗН скапливается в бетонном бункере (под вальцами), из которого отсасывается вверх по трубам всасывающей пневмотранспортной системы. Вальцовые станки А1-БЗН по сравнению со станками ЗМ2 и БВ2, подлежащими замене при реконструкции мукомольных за-водав, обладают рядом преимуществ: более чувствительным механизмом настройки автоматического привала-отвала вальцов и их параллельности; регулирования зазора питающего механизма в зависимости от массы поступающего на станок продукта, скорости вращения питающих валков и охлаждением вальцов. Основные показатели эффективности работы вальцовых станков следующие: удельные нагрузки, расход энергии и степень измельчения продукта. Эти показатели взаимосвязаны, их абсолютное значение для каждой пары мелющих вальцов зависит от технологических функций, которые они выполняют. Так например, на I драной системе удельная нагрузка кг/(см- сут) составляет 860...950, а на последней, IV, драной систе­ме 180...230. Для общей оценки рационального использования всей валь­цовой линии используют показатель удельной нагрузки q, кото­рую определяют по формуле

где Q - производительность мукомольного завода, кг/сут; l - длина вальцовой линии всех парноработающих вальцов, см.

На мукомольных заводах, оснащенных комплектным высоко­производительным оборудованием, при сортовых помолах пше­ницы удельная нагрузка составляет 60...65 кг/(см-сут).

Вальцовые станки MB и МВП - это усовершенствованные модели серийных станков ЗМ2 и БВ2, соответственно с гравитаци­онным выходом продукта и встроенными пневмоприемниками, мо­дернизацию и серийный выпуск которых осуществило объединение УПМАШ, г. Воронеж. Станки MB и МВП при установке на мель­ничных вредприятиях полностью взаимозаменяемы со станками ЗМ2 и БВ2 по всем типоразмерам (250x600, 250x800 и 250x1000). Для мукомольных предприятий, оборудованных станками ЗМ2, БВ2, замена на станки MB, МВП не требует каких-либо серьезных изменений в монтаже, в то время как замена их станками БЗН без реконструкции невозможна как по установочным параметрам, так и по дополнительным источникам энергии (сжатого воздуха) для обеспечения операций привала-отвала вальцов. Имеют многочисленные конструктивные отличия от стан­ков ЗМ2, БВ2, с целью совместимости их технологических параметров со станками БЗН и зарубежных моделей, повышение их надежности и улучшение санитарно-гигиенических условий

ВАЛЬЦОВЫЕ СТАНКИ ТИПА ВС

Вальцовые станки типа ВС разработаны и поставлены на произ­водство объединением «Мельшшест», г. Нижний Новгород, ведущим предприятием России по производству оборудования для отрасли хлебопродуктов. В настоящее время выпускаются модели ВС.600 и ВС.1000 с валками 600x250 и 1000x250 мм. Завершаются работы по постановке на производство типоразмера станка ВС.800 с валками 800 х 250 мм. Следует отметить, что заводом освоено и производство вальцов всех типоразмеров, начиная с длины 400 мм и до 1000 м. Валки полые с отбеленным слоем чугуна до 25 мм поставляются как окончательно обработанными (матированными или рифлеными). так и в виде заготовок.

Вальцовый станок ВС (рис. 128) выполнен с учетом современных достижений и требований к машинам этого типа. Станок имеет достаточно высокий уровень автоматизации и предусматривает контроль скорости вращения рабочих вальцов, нагрева поверхностей и др. Вальцы 2 в станке ВС расположены по горизонтали, как это предусмотрено во всех совре­менных станках. Корпус станка 1 цельносварной. На станке смонтирована стеклянная приемная труба 7 повышенной конусности с датчиками уровня 18, 20, установленными по высоте трубы, что позволяет контроли­ровать скорость прохождения продукта. Питающее устройство клас­сической конструкции включает дозирующий 3 и питающий 4 валки и заслонку 5. Для более точного направления продукта в лоно измельчения имеется направляющая 8.

Питающие валки приводятся мотор-редуктором 23 и комплекту­ются по требованию частотным преобразователем 21, что позволяет плавную регулировку подачи продукта в зону измельчения.

Мелющие вальцы 2 повышенной износостойкости имеют отбеленный слой почти в два раза выше, чем в станках БЗН, что даёт больший срок их эксплуатации. Вальцы бомбированы (концы на конус), что обеспечивает равномерный зазор по их длине при нагрузке.

Автоматический привал-отвал медленного валка осуществляется по сигналу датчиков уровня 18, сигнализатора 19 (СУ200В), пневмо-цилиндром 11. Настройка зазора и его фиксация, как и проверка валков на параллельность, осуществляется механизмом 25 и фик­сируется рукояткой. Межвальцовая передача аналогична станкам БЗН. Очистка поверхности валков осуществляется щетками о. Выход продукта осуществляется через сборный конус 22, аспирация стан­ка - через воздуховод 10.

1-станина; 2 - мелющие вальцы; 3 - дозирующий валок; 4 - питающий валик; 5-заслонка; 6- щетки; 7 - приемная труба; 8-направляющая; 9 _ электрооборудование;10- аспирационный канал; 11 - пневмоцилиндр; 12 - мсж-за-"ьцозая ш-редача: 13 - капот; 14 - боковина корпуса; 15 - крышка; 16, 26 - дверка; 17 - пост аварийного отключения; 18- датчик уровня; 19 - сигнализатор уровня СУ200В; 20 - датчик среднего уровня продукта; 21 - частотный преобразователь для автоматического регулирования числа оборотов питающих валков; 22 - сборный конус; 23 - мотор-редуктор питающих валков; 24 - пульт управления; 25 - механизм регу­лирования и фиксации зазора

Доступ к станку осуществляется через открывающиеся дверки 16 и 26. Управление станком осуществляется как дистанционно, так и с пульта 24. Аварийная остановка производится специальным выключателем 17


Похожая информация.


Вальцовые станки типа А1-БЗН

Вальцовые станки типа A1-БЗН выпускают в трех модификациях, для различных мукомольных заводов. Станки устанавливают группами по четыре-пять машин с общими капотами. Набор станков различной формы исполнения и последовательность их монтажа в каждой группе регламентированы проектом типового мукомольного завода. Характерно, что электродвигатели этих вальцовых станков размещают на специальной площадке под междуэтажным перекрытием.

Вальцовый станок типа Ai-БЗН имеет 21 форму исполнения.

Вальцовый станок А1-БЗ-2Н используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка ЗМ-2. Станок А1-БЗ-2Н отличается от станка AI-БЗН наличием индивидуальных капотов и возможностью установки электродвигателя на том же перекрытии, где расположен станок, а также под перекрытием на специальной площадке. Станок имеет 39 форм исполнения.

Вальцовый станок Al-БЗ-ЗН используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка БВ-2.

Он отличается от описанных выше станков наличием устройства для верхнего забора измельченного продукта. Это устройство состоит из приемных труб для отсоса продукта непосредственно после измельчения из бункеров под вальцами, системы пневмотранспорта. Вальцовый станок А1-БЗ-ЗН имеет 22 формы исполнения.

Вальцовый станок А1-БЗН (рис. 17.1) состоит из следующих основных сборочных единиц: мелющих вальцов, привода вальцов, меж-вальцовой передачи, механизмов настройки и параллельного сближения вальцов, системы привала - отвала вальцов, приемно-питающего устройства и станины.

Рис. 17.1. Вальцовый станок А1-БЗН:
1 - приемная труба; 2 - сигнализатор уровня продукта; 3 - заслонка; 4 - винтовое устройство; 5 - рукоятка; 6 - штурвал; 7 - стопорная головка; 8 - нож-очиститель; 9 - выпускной бункер; 10 - щетка-очиститель; 11, 12 - медленно-и быстровращающиеся вальцы; 13 - питающий валок; 14 - шнек; 15 - шторки-датчики

Мелющие вальцы устанавливаются парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. Длина вальца - 1000 мм, а номинальный диаметр бочки - 250 мм. Масса полого вальца примерно на 30% меньше цельного - 270 кг.
Валец представляет собой двухслойную полую цилиндрическую бочку, диаметр внутренней полости которой - 158 мм, глубина наружного отбеленного слоя (рабочего) - 10 мм. С обоих концов бочки запрессованы цапфы. На конической части цапфы установлены подшипники. Концевая цилиндрическая часть служит для насадки приводного шкива или шестерен межвальцовой передачи. В цапфы быстровращаю-щегося вальца вставлены трубки с охлаждающей водой.

Мелющие вальцы вращаются в двухрядных роликовых сферических подшипниках, имеющих коническую посадку внутренних обойм. Подшипник демонтируют с конической части цапфы гидравлическим съемником, который нагнетает масло через отверстие в цапфе в место сопряжения с поверхностью внутренней обоймы подшипника. Корпуса подшипников верхнего вальца прикреплены к боковой части станины четырьмя болтами, а корпуса подшипников нижнего подвижного вальца имеют свободные концы (локти), опирающиеся на предохранительные пружины. Корпус нижнего вальца выполнен разъемным, что позволяет снимать вальцы вместе с подшипниками.

Устройство для охлаждения верхнего быстровращающегося вальца работает следующим образом (рис. 17.2). Валец 6 охлаждается водой, поступающей через трубку 5, которая введена свободным концом через осевое отверстие в цапфе во внутреннюю полость вальца. Трубка имеет два отверстия для разбрызгивания воды внутри вальца. Открытый конец трубки жестко соединен с корпусом 7. Внутри корпуса в подводящем водопроводе установлен пробковый кран, регулирующий подачу воды во внутреннюю полость вальца. Теплая вода отводится через кольцеобразный зазор между неподвижной трубкой 5 и вращающейся бронзовой втулкой 2 с коническим раструбом. Отработавшая вода поступает в сливную камеру, отводится по трубе в охлаждающее устройство и возвращается в систему рециркуляции. Нагретую воду можно использовать для увлажнения зерна в подготовительном отделении мукомольного завода.

Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу теплоты. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продуктов после измельчения - 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание и чрезмерное измельчение оболочек, а также перегрев продуктов размола. Расход воды на охлаждение не превышает 0,6 м3/ч для одного вальцового станка. Однако в настоящее время на практике постепенно отказываются от водяного охлаждения вальцов по причинам, связанным с экономическими и дополнительными трудозатратами.

Рис. 17.2. Устройство для охлаждения быстровращающегося вальца.
1 - корпус; 2 - бронзовая втулка; 3 - шестерни межвальцовой передачи; 4 - подшипник; 5 - трубка; 6 - цапфа; 7 - валец

Ведущие зарубежные фирмы достигают практически тех же результатов внедрением активной системы аспирации и др.

В условиях производства необходимо контролировать температуру нагрева вальцов и измельченного продукта. При увеличении температуры продукта выше нормы после прохождения его через вальцовый станок, необходимо выявить причину нарушения технологического процесса: износ рабочей поверхности вальцов, непараллельность вальцов, неравномерность заполнения мелющей щели, нарушение в системе охлаждения вальцов и др.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных, 12-й размольной установлены щетки 10 из полимерного материала, а гладкие вальцы очищаются ножами 8 (см. рис. 17.1). Механизм привода вальцов состоит из привода верхнего вальца и межвальцовой передачи. Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив, который устанавливается на правой цапфе верхнего быстровращающегося вальца. Диаметр ведущего шкива для рифленых вальцов составляет 150 мм, а для гладких - 132 мм.

Предусмотрено два варианта установки электродвигателей: непосредственно на перекрытии, где располагается вальцовый станок, и под перекрытием на специальной площадке (для станка А1-БЗН подходит только второй вариант).

Межвальцовая передача представляет собой редуктор, состоящий из двух косозубых шестерен шириной 55 мм. Большая чугунная шестерня и малая стальная установлены, соответственно, на левых концах

цапф нижнего и верхнего вальцов. Обе шестерни вращаются в масле, залитом в кожух 10 (рис. 17.3).

Рис. 17.3. Вальцовый станок А1-БЗН в разрезе:

1 - горловина; 2 - шкив; 3 - пневмоперекчючатель привала-отвала; 4 - пружина заслонки; 5 - преобразователь сигнала; 6 - шкив питающего механизма; 7 - рукоятка переключения скоростей; 8 - шестерни межвальцовой передачи; 9 - корпус системы охлаждения; 10 - коясух межвальцовой передачи; 11 - корпус подшипника; 12 - блок реле; 13 - конец (локоть) свободный подвижного корпуса подшипника; 14 - фильтр воздушный; 15 - клапан электромагнитный; 16 - воздухопроводы; 17 - пружина предохранительная; 18 - пневмоцилиндр; 19 - кнопки «Пуск», «Остановка»; 20 - станина; 21 - подвеска; 22 - вал эксцентриковый; 23 - штурвал механизма настройки параллельности вальцов; 24 - рукоятка точной настройки межвальцового зазора; 25 - тяга; 26 - винт ограничительный; 27- цапфа

Настройка вальцов на параллельность производится двумя механизмами винтового типа, сопряженными с механизмом параллельного сближения. При вращении штурвала по часовой стрелке через систему рычагов подвеска тянет локоть подвижного подшипника вверх и сближает вальцы на одном конце, при вращении штурвала против часовой стрелки подвеска опускается, поворачивает рычаг вокруг эксцентрикового вала и отводит нижний валец. Стопорной головкой 7 (см. рис. 17.1) с помощью рукоятки фиксируется установленное положение нижнего вальца. Такая же операция производится и для другого конца вальца.

Максимальное изменение зазора между вальцами с помощью механизма настройки параллельности составляет 4,4 мм. Чувствительность механизма характеризуется изменением зазора за один оборот штурвала и равна 0,22 мм. Если измельчение по длине вальцов неодинаково, то вращением штурвалов 6 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами.

Механизм параллельного сближения вальцов предназначен для точной установки рабочего зазора. Требуемый рабочий зазор между вальцами устанавливается вращением рукоятки 5, которая через систему рычагов разворачивает эксцентриковый вал так, чтобы соответственно приблизить или отвести нижний валец. Максимальное изменение зазора между вальцами механизмом параллельного сближения составляет 1,2 мм, а чувствительность механизма за один оборот рукоятки - 0,06 мм.

Система привала - отвала вальцов обеспечивает автоматическое и ручное управление этими операциями. В рабочем режиме функционирует автоматическое управление привалом - отвалом вальцов. Ручной привал и отвал вальцов выполняется подъемом и опусканием рукоятки 5 (см. рис. 17.1). Усилие, прикладываемое к рукоятке, передается на эксцентриковый вал и далее по схеме, рассмотренной выше, происходит привал или отвал. Положение привала вальца фиксируется защелкой, которая зацепляется с упором, запрессованным в боковине станка.

При попадании в вальцовый станок инородных тел размером до

5 мм предохранительная пружина обеспечивает безопасное их прохождение в результате грубого отвала нижнего вальца.

Автоматическое управление привалом - отвалом вальцов включает две схемы: электрическую, измеряющую уровень продукта под питающим механизмом и вырабатывающую соответствующий электрический сигнал управления, и пневматическую - воздействующую через систему рычагов на эксцентриковый вал, который обеспечивает привал-отвал по схеме, рассмотренной выше.

Электрическая схема состоит из сигнализатора уровня продукта, блока реле 72 (рис. 17.3) и электромагнитного клапана 75. Пневматическая схема состоит из входного фильтра 14, пневмопереключателя 3 и пневмоцилиндра 18.
Сигнализатор уровня продукта представляет собой конденсатор с определенной емкостью. Изменение уровня продукта в приемной трубе станка изменяет емкость сигнализатора и соответственно управляющий сигнал, который преобразуется и усиливается в схеме электронного блока. При определенной величине сигнал вызывает замыкание контактов реле. Ток напряжением 220 В подается на обмотки электромагнитного клапана 75, который открывает доступ сжатому воздуху под давлением 0,50 МПа к поршню пневмоцилиндра 18. Поршень поднимает шток и через систему рычагов разворачивает эксцентриковый вал 22 на привал нижнего вальца.

При уменьшении уровня продукта в приемной трубе до определенного предела управляющий сигнал по величине становится недостаточным для удержания контактов реле в замкнутом состоянии. Клапан перекрывает доступ сжатому воздуху в пневмоцилиндр, поршень со штоком опускается и механизм срабатывает на отвал вальца. При работе станка в автоматическом режиме в экстренных случаях возможен принудительный отвал вальцов ручным пневмопереключателем 3.

Приемно-питающее устройство состоит из приемной трубы, валкового питающего механизма с приводом и заслонкой и системы регулирования подачи продукта.

Приемная труба представляет собой стеклянный цилиндр, установленный в горловине вальцового станка. Приемные трубы вальцовых станков, обслуживающие две различные технологические системы, разделены вертикальной перегородкой, которая обеспечивает автономное питание каждой половины станка. В каждой половине трубы установлен сигнализатор уровня продукта.

Механизм подачи продукта (рис. 17.4) в зависимости от физикомеханических свойств исходного продукта на различных технологических системах имеет семь форм исполнения и включает в различных сочетаниях валковый питатель, редуктор, заслонку и привод.

Питатель может быть выполнен в трех модификациях: дозирующий валок с промежуточными валками (для I драной системы), дозирующий валок со шнеком (для остальных драных систем) и дозирующий и распределительный валки (для размольных систем). На поверхности дозирующего валка нанесены продольные рифли с уклоном 1°30". В зависимости от технологической системы их может быть 50, 30 или 20. Распределительный валок имеет 50 поперечных рифлей с шагом 2 мм. Шнек выполняется в виде вала с лопастями. Промежуточный валик не имеет нарезки, он изолирован от зоны подачи продукта и выполняет лишь кинематические функции.

Все питатели типа валка со шнеком и двухвалковые для 11-й и 12-й размольных систем имеют редукторы для четырехпозиционного регулирования скоростей дозирующего валка. Скорость вращения валка

питающего механизма устанавливают так, чтобы слой продукта был тонким и распределялся по всей его длине.

Рис. 17.4. Механизм подачи продукта
1 - рукоятка; 2 - шнек; 3 - пружина; 4, 5 - кулачковые полумуфты; 6 - шкив; 7 - плоскоременная передача; 8 - быстровращающийся валец; 9 - тяга с поводком; 10 - валок; 11 - блок шестерен

Заслонка 3 (см. рис. 17.1) образует с дозирующим валком питающий зазор, который устанавливают вручную с помощью винтового устройства 4 и регулируют автоматически. Автоматическое регулирование питающего зазора каждой половины станка осуществляется с помощью двух шарнирно подвешенных гофрированных шторок-датчиков 15 и системы рычагов. Чем больше поступает в станок продукта, тем больше питающий зазор, и наоборот. Для каждой технологической системы с помощью ограничительного винта вручную устанавливают диапазон автоматического перемещения заслонки.

Привод механизма подачи продукта (см. рис. 17.4) осуществляется плоскоременной передачей 7 от ступицы шкива привода мелющих вальцов. Вращение передается на шкив 6, на одном валу с которым установлено две кулачковые полумуфты 4, 5, которые входят в зацепление одновременно с привалом медленновращающегося вальца. Питающие валки установлены в подшипниках скольжения.

Станина вальцового станка разборная, чугунная, состоит из двух боковин, двух продольных стенок и траверсы. Детали станины соединены между собой болтами. В боковинах сделаны отверстия и проемы для размещения подвижных и неподвижных сборочных единиц станка. Станок полностью закрыт капотом, который изготовлен из четырех съемных нижних и четырех откидных верхних стальных штампованных ограждений.

Работа станка начинается с пуска электродвигателя, от которого клиновыми ремнями вращение передается сначала шкиву верхнего вальца, а затем через межвальцовые шестерни - нижнему вальцу. От ступицы шкива верхнего вальца вращение плоским ремнем передается шкиву питающих валков, а от него - ведущей полумуфте кулачковой муфты.

При заполнении приемной трубы продуктом емкостной сигнализатор уровня обеспечивает замыкание цепи электромагнитного клапана, который соединяет магистраль сжатого воздуха с рабочей полостью пневмоцилиндра. При этом поршень поднимает шток вверх, а от него через систему рычагов разворачивается эксцентриковый вал, который перемещает вверх свободные концы (локти) подшипников нижнего вальца, в результате чего происходит привал мелющих вальцов.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через шестерни передается питающим валкам. Под действием массы продукта датчик питания через систему рычагов поворачивает заслонку, и через питающий зазор начинает поступать продукт. При прекращении поступления продукта в приемную трубу станка электронная схема размыкает цепь электромагнитного клапана и через систему рычагов происходит отвал мелющих вальцов.

При производстве муки процесс измельчения зерна и промежуточных продуктов является одним из главных, так как в значительной мере влияет на выход и качество готовой продукции. Измельчение зерна – одна из наиболее энергоемких операций. Технологические приемы и машины, применяемые для измельчения, в значительной степени определяют технико-экономические показатели мукомольного завода.

При выборе оборудования и общей характеристики процесса измельчения на вальцовых станках вводится нормативный показатель средней удельной нагрузки, который определяют отношением суточной производительности размольного отделения мукомольного завода к общей длине мелющей линии. Для вальцовых станков А1-БЗН эта нагрузка составляет 70…75 кг/(см×сут).

Расход электроэнергии не может быть определен аналитически, но установлены определенные практические нормативы удельного расхода электроэнергии на 1 т готовой продукции в целом по заводу.

На основные показатели эффективности вальцового станка влияют отношение окружных скоростей вальцов (дифференциал), состояние поверхности, точность зазора по длине вальцов. Увеличение окружных скоростей вальцов при постоянном дифференциале значительно повышает производительность, несколько увеличивает расход энергии и практически не влияет на гранулометрический состав измельченного продукта. Окружная скорость быстровращающихся рифленых вальцов составляет 5,5…6,0 м/с, а микрошероховатых – 5,2…5,4 м/с.

Существенное влияние на производительность и характер измельчения оказывает дифференциал. При увеличении дифференциала преобладает разрушение частиц за счет деформации сдвига, при уменьшении – возрастает роль деформации сжатия.

Большое влияние на качество и производительность вальцового станка оказывает не только величина зазора, но постоянство его размера по всей длине вальцов. Правильную цилиндрическую форму вальцов обеспечивают при шлифовке на специальных шлифовально-рифельных станках. На постоянство величины зазора может оказывать влияние состояние подшипников, пружин-амортизаторов и шарнирных соединений.

На качество измельчения отрицательно влияет радиальное биение вальцов, которое может быть следствием неправильной геометрической формы отклонений при запрессовке полуосей, дефектов литья, вызывающих дебаланс. Чем меньше радиальное биение вальцов, тем стабильнее рабочий зазор, выше качество размола, больше износостойкость вальцов. Поэтому технология обработки вальцов обязательно включает их динамическую балансировку на специальном станке.

Важным условием выполнения всех последовательных технологических этапов измельчения зерна является обеспечение заданных параметров рифленой микрошероховатой поверхности вальцов, которые для каждой технологической системы рекомендованы «Правилами» и учтены в форме исполнения вальцовых станков. Рифли нарезают на шлифовально-рифельном станке, а микрошероховатую поверхность получают воздействием струи сжатого воздуха и абразивного материала на станке со специальным пескоструйным устройством.

Вальцовый станок ЗМ2 двухсекционный (рис. 10.4) с автоматическим регулированием производительности предназначен для измельчения зерна и промежуточных продуктов размола на мукомольных заводах.

Станок включает: станину 1 ; вальцы 3 и 28 ; распределительный 4 и дозирующий 5 валики; аспирационное устройство 2 ; рычаги 6 , 11 , 15 , 23 ; винты 7 , 17 , 24 ; планку 8 ; секторную заслонку 9 ; пружины 10 , 22 ; питающую трубу 12 ; датчики 13 и 14 ; механизм грубого привала 19 ; механизм 25 настройки и выравнивания подвижного вальца; межвальцовую передачу 26 ; эксцентриковый вал 27 и электродвигатель 29 .

Рис. 10.4. Вальцовый станок ЗМ2

Мелющие вальцы – это две стальные полуоси и рабочий барабан, изготовленный из никель-хромистого чугуна, наружная поверхность которого отбелена. Вальцы 3 и 28 в станине 1 устанавливают на роликовых подшипниках так, чтобы между линией, соединяющей оси вальцов, и горизонталью был угол 45°. Один из каждой пары вальцов имеет только вращательное движение (быстровращающийся), второй (медленновращающийся), кроме вращательного, может иметь и поступательное движение в направлении, перпендикулярном оси. Этим обеспечиваются регулирование зазора между вальцами, его равномерность по длине вальцов, быстрое сближение (привал) и удаление (отвал), а также прохождение между вальцами твердых посторонних предметов без поломок деталей станка и повреждения вальцов. Вальцы связаны между собой шестеренчатой передачей. Очищают вальцы щетками 30 .

Настройку вальцов на параллельность проводят винтовыми механизмами. Для параллельного сближения вальцов служит эксцентриковый механизм. Твердые посторонние предметы проходят между вальцами благодаря кратковременному увеличению зазора при сжатии пружины амортизатора, установленного под рычагом подвижного вальца.

Питающий механизм станка двухваликовый. Распределительный валик 4 имеет разнонаправленные (левые и правые) винтовые рифли, а дозирующий 5…35 продольных рифлей на окружности на драных системах и 59 рифлей на размольных. Механизм регулирования питания позволяет автоматически изменять подачу продукта дозирующим валиком в зависимости от поступления его в питающую трубу.

Питающий механизм приводится в движение плоскоременной передачей от ступицы быстровращающегося вальца, а дозирующий – от распределительного посредством шестеренчатой передачи. Щель между секторной заслонкой и распределительным валиком регулируют вручную.

Вальцовые станки типа ЗМ2 выпускают с механическим автоматом, который обеспечивает выполнение следующих операций:

– отвал и привал подвижного вальца;

– выключение и включение вращения питающих валиков;

– закрытие и открытие секторной заслонки.

Отвал и привал вальцов сопровождаются световой сигнализацией. При отвале загораются красные сигнальные лампы. При холостом ходе станка сигнальные лампы включены, при рабочем режиме выключены.

Для регулирования подачи продукта над дозирующим валиком 5 на рычаге 6 шарнирно закреплена секторная заслонка 9 , которая соединена тягой 18 и рычагами 11 и 15 с датчиком питания 13 , находящимся в питающей трубе станка. Для возврата заслонки в нижнее (закрытое) положение служит пружина 10 , усилие которой можно изменять перестановкой ее ушка в отверстиях опорной планки на клапане 16 . Для регулирования величины перемещения (хода) секторной заслонки служит винт 17 , закрепленный на клапане 16 .

Правый кривошип рычага 6 соединен через серьгу 20 , винт 24 , амортизационную пружину 22 , рычаг 23 , вал 21 с рычагом автомата управления. Левый кривошип рычага 6 через планку 8 опирается на винт 7 , закрепленный на станине, который ограничивает движение секторной заслонки при закрытии ее и исключает поломку деталей.

Предварительную установку величины питающей щели осуществляют вращением винта 24 . Дополнительно питающую щель во время работы станка (при очистке питающего бункера) увеличивают путем оттяжки винта 24 за маховичок «на себя».

Включение грубого привала вальцов, вращение валиков 4 и 5 , а также перемещение секторной заслонки 9 выполняются автоматически при наполнении продуктом питающей трубы. Обратные процессы протекают также автоматически при прекращении поступления продукта в питающую трубу станка.

Техническая характеристика станков типа ЗМ2

Производительность, т/сут……………………………………… 60…100

рифленых………………………………………………………. 490

гладких…………………………………………………………. 390

Расход воздуха на аспирацию, м 3 /ч…………………………. 600

Мощность электродвигателя привода

вальцов одной половины, кВт………………………….. 15,0…22,0

Габаритные размеры, мм………………………………………… 1800´470´1390

Масса, кг………………………………………………………………. 2550…3350

Вальцовый станок А1-БЗН (рис. 10.5) применяют в составе комплектного оборудования на мукомольных заводах с увеличенным выходом муки высоких сортов и устанавливают группами по четыре и пять машин с общими капотами.

Вальцовый станок состоит из следующих основных узлов: мелющих вальцов; привода вальцов; механизмов настройки и параллельного сближения вальцов 4 ; системы привала-отвала вальцов; приемно-питающего устройства; станины; корпуса 2 устройства охлаждения быстровращающегося вальца.

Мелющие вальцы 8 установлены парами в обеих половинах станка. Их вращение осуществляется с помощью зубчатых колес 3 и 5 . С уменьшением этого угла улучшаются условия питания вальцовой пары, и увеличивается коэффициент заполнения зоны измельчения.

Рис. 10.5. Мелющие вальцы с подшипниковыми узлами, приводом и межвальцовой передачей

Мелющие вальцы выполнены в виде бочки с запрессованными в нее с обеих сторон цапфами. Бочки и цапфы полые. Глубина верхнего отбеленного слоя бочек 10…20 мм. Номинальный размер бочек 250×1000 мм. Вальцы в станке располагают под углом 30° к горизонтали.

Радиальную и осевую нагрузки, действующие на рифленые вальцы при измельчении продукта, воспринимают подшипники 1 и 11 . Подшипники 1 двух верхних вальцов (в каждой половине станка по одному) прикреплены к боковине болтами, причем два из них призонные. Нижний валец каждой половины станка может перемещаться относительно верхнего. Это дает возможность регулировать величину зазора между вальцами, а также обеспечить мгновенный отвал нижнего вальца при прекращении подачи продукта, что позволяет избежать опасной работы вальцов «рифлей по рифлям». Для этого корпуса подвижных подшипников 6 и 10 установлены на цапфах 9 , запрессованных в отверстиях боковины. Корпуса подвижных подшипников имеют разъемные крышки. Один из корпусов этих подшипников сопрягается с цапфой через эксцентриковую втулку 7 , вращением которой изменяют взаимное расположение мелющих вальцов и добиваются параллельности.

Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив 13 верхнего быстровращающегося вальца. Для привода применяют узкие клиновые ремни УА-4500-6. Шестерни и шкив закреплены на цапфах шпонками 12 . Диаметр ведущего шкива для рифленых вальцов 150 мм, для гладких — 132 мм.

Рис. 10.6. Устройство охлаждения вальца станка ЗМ2

К кожуху межвальцовой передачи прикреплен корпус 2 (рис. 10.6) устройства охлаждения быстровращающегося вальца. Консольная трубка 1 введена в пустотелый валец и одним концом жестко прикреплена к корпусу. Внутри корпуса (в подводящей магистрали) смонтирован пробковый кран 3 , с помощью которого регулируется подача воды во внутреннюю полость вальца. Отвод воды из вальца в корпус обеспечивает насадка 5 , ввернутая в резьбовое отверстие цапфы.

При замене вальцов подачу воды перекрывают вентилем 4 , закрепленным на подводящей вертикальной трубе.

Охлаждение вальца происходит следующим образом. Вода через кран, регулирующий подачу, попадает в изолированную камеру, откуда через радиальное отверстие поступает в трубку и из нее разбрызгивается в полость вальца. Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу тепла. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продукта после измельчения – 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание оболочек и перегрев продуктов размола. Уменьшение влагоотдачи стабилизирует влажность продуктов измельчения, соответственно снижается накапливание зарядов статического электричества. В охлажденных продуктах меньше вероятность конденсации влаги в самотечных трубах и на ситах рассевов. Снижение теплового расширения охлаждаемых вальцов обеспечивает стабильность рабочего зазора. Для улучшения теплообмена внутренняя поверхность вальца должна быть обработана так, чтобы не было глубоких раковин, заусениц и других неровностей.

Устройство подачи зерна выполнено: для I драной системы в виде дозирующего и промежуточного валиков, для остальных систем с рифлеными вальцами (кроме 12-й размольной) в виде сочетания дозирующего валика и шнека; для размольных систем в виде сочетания распределительного и дозирующего валиков. Привод устройства подачи зерна обеспечивает плоскоременная передача.

Изменения передаточного числа редуктора и, следовательно, частоты вращения дозирующего валика у станков драных систем (кроме первой) и 11-й, 12-й размольных систем достигают применением механизма с вытяжной шпонкой, управляемого рукояткой через реечную шестерню. Другие исполнения устройств подачи продукта не имеют шпонки в редукторах. Вращение от ведомого шкива плоскоременной передачи редукторам передается через кулачковую муфту, включение которой сблокировано с грубым привалом вальцов посредством рычагов и вилки.

Для автоматического регулирования подачи зерна (рис. 10.7) над дозирующим валиком 5 на шарнирах подвешена заслонка 1 . Она соединена через рычаги, ролик, кронштейн и валик с датчиком 3 питания, выполненным в виде двух шторок.

Для регулирования воздействия зерна и, следовательно, чувствительности сигнализатора предназначена пружина 6 . Деформация последней изменяется перемещением гайки 7 относительно винта 8 . Для станков драных систем (кроме I и IV мелкой) кромка заслонки зубчатая, для станков остальных систем – гладкая. Диапазон автоматического перемещения заслонки регулируют ограничительным винтом 2 . В зоне поступления зерна (в горловине станка) установлен зонд 4 .

Рис. 10.7. Устройство автоматического регулирования подачи зерна

Механизм настройки параллельности вальцов состоит из маховика 25 , соединенного шпонкой с втулкой 26 (рис. 10.8). В ее резьбовое отверстие ввернут винт 27 . Одним из торцов, имеющим прямоугольные направляющие, винт контактирует с роликом рычага 24 , установленного на шипе эксцентрикового вала. К рычагу шарнирно закреплена подвеска 1 .

На ней смонтированы предохранительные пружины 33 , обеспечивающие безопасный проход между вальцами инородных тел диаметром до 5 мм. На верхний торец предохранительных пружин опирается свободный конец корпуса подвижных подшипников 31 .

В состав устройства также входят: болты 9 и 10 ; ограничительный винт 11 ; рычаги 2 , 3 , 8 , 13 , 14 , 24 ; воздухораспределитель 15 ; ролик 16 ; кронштейн 17 ; винты 7 , 19 , 27 ; гайка 20 , горловина 22 станка; подшипники 23 , 32 ; боковина 29 станины.

Механизм обеспечивает параллельное сближение вальцов после их настройки. Грубого привала вальцов достигают вращением эксцентрикового вала вручную (за рукоятку винта 7 , соединенного с рычагами 2 и 3 , образующими механизм параллельного сближения) или от штока пневмоцилиндра 34 .

Рис. 10.8. Механизм настройки параллельности вальцов в вальцовом станке А1-БЗН

В первом случае защелка 6 на рычаге 2 зацепляется с упором 4 и обеспечивает приваленное положение вальцов. Во втором случае вращением эксцентрика 5 исключают зацепление защелки 6 с упором 4 , а привал вальцов обеспечивают сжатым воздухом с номинальным давлением 5×10 -5 Па. Рабочая полость пневмоцилиндра через электро-пневматический клапан 30 может соединяться с магистралью сжатого воздуха или атмосферой. Давление сжатого воздуха в цилиндре контролируют по манометру на пульте управления. Грубый отвал вальцов обеспечивают пружиной и массой нижнего вальца.

Сигнализатор уровня состоит из зонда, головки 21 и релейного блока 28 . При наполнении зерном питающей трубы сигнализатор уровня позволяет обеспечить автоматическое включение грубого привала вальцов и вращение питающих устройств. Обратные процессы происходят также автоматически при прекращении поступления зерна в питающую трубу. Местное управление грубым привалом осуществляют двухходовым распределителем воздуха, рукоятка которого расположена на лицевой панели станка.

Сигнализацию холостого хода обеспечивает автоматическое загорание лампочки, находящейся на лицевой панели.

В процессе поступления зерна в питающую трубу изменяется электрическая емкость зонда 4 . Емкость зонда преобразуется электрической схемой головки 21 в напряжение, которое управляет работой реле блока 28 . Это обеспечивает срабатывание электропневматического клапана, приводной механизм которого соединяет магистраль сжатого воздуха с рабочей плоскостью пневмоцилиндра. Поршень перемещает шток вверх, а от него (через винт 7 и рычаги 2 , 3 ) поворачивается эксцентриковый вал. Шипы последнего перемещают вверх рычаг 24 , подвеску 1 , предохранительную пружину 33 и свободные концы подвижных подшипников 32 . Происходит привал вальцов. Одновременно рычаг 8 освобождает рычаг 14 и вилку 12 .

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через редукторы начинает передаваться следующим образом: в станках I драной системы – через промежуточный валик дозирующему; в станках с рифлеными вальцами остальных систем – шнеку и дозирующему валику; в станках с гладкими вальцами – дозирующему и распределительному валикам для подачи зерна на измельчение.

Под действием массы зерна, преодолевая сопротивление пружины 18 , датчик 3 питания перемещает валик, рычаги, ролик. В результате через гайку и винт проворачивается заслонка 1 и в зазор между ней и дозирующим валиком поступает зерно. При уменьшении массы зерна, поступающего в питающую трубу, уменьшается давление на датчик. В результате под действием пружины 18 и собственной массы заслонка 1 опускается к дозирующему валику 5 , уменьшая подачу зерна.

Если измельчение по концам вальцов неодинаковое, то вращением маховика 25 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами. При прекращении поступления зерна в питающую трубу емкость зонда изменяется. При этом головка зонда и релейный блок размыкают цепь электропневматического клапана. В результате прекращается подача сжатого воздуха в пневмоцилиндр, и под действием пружины через эксцентриковый вал соответствующие рычаги и винт происходит отвал вальцов.

На различных системах вальцы отличаются друг от друга по параметрам нарезки рифлей. Это обеспечивает высокую технологическую эффективность.

Кроме того, исполнение вальцовых станков отличается устройством подачи зерна, учитывающим его особенности, мощностью электродвигателей, типом очистителей. Наиболее нагружен электродвигатель вальцового станка на I драной системе. Его мощность 18,5 кВт. На последующих системах мощность электродвигателей уменьшается в соответствии с уменьшением количества измельчаемого продукта. К отличительным особенностям следует отнести разницу в конструкции капотов и диаметр приводных шкивов.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных и 12-й размольной, установлены щетки 30 из полимерного материала. Микрошероховатые вальцы и вальцы 12-й размольной системы очищаются ножами. Для улучшения условий запуска приводного электродвигателя необходимо, чтобы ножи соприкасались с поверхностью вальцов только после привала. Это достигается блокировкой перемещения ножей с поворотом эксцентрикового вала посредством тросов. Зазор между вальцами и ножами не должен превышать 0,02 мм.

Величину зазоров между приваленными вальцами проверяют на расстоянии 50…70 мм от их торцов (величина зазора должна составлять для I драной системы, мм: 0,8…1,0; для II драной – 0,6…0,8; для III драной крупной – 0,4…0,6; для драной мелкой – 0,2…0,4; для рифленых вальцов размольных систем – 0,1…0,2; для гладких вальцов – 0,05). Зазоры между заслонкой и дозирующим валиком должны быть на драных системах не более 0,35 мм, на размольных – не более 0,15 мм. Зазоры между вальцами и ножами не должны превышать 0,02 мм.

Форма исполнения вальцовых станков включает следующие переменные параметры:

– сочетание половин станка для определенной технологической системы;

– характер рабочей поверхности мелющих вальцов (параметры рифления или микрошероховатости);

– отношение окружных скоростей мелющих вальцов – дифференциал (2,5 или 1,25);

– способ очистки мелющих вальцов (нож, щетки);

– варианты устройства механизма подачи исходного продукта (тип валкового питателя, наличие редуктора, кромка заслонки, диаметры шкивов плоскоременной передачи);

– мощность электродвигателя каждой половины станка;

– диаметры приводных шкивов (150 и 132 мм);

– вариант установки электродвигателя (на перекрытие или под ним);

– способ капотирования вальцовых станков (групповой, индивидуальный).

Настройка и регулирование станка заключаются в следующем. До пуска вальцового станка проверяют: наличие смазки; работу привально-отвального механизма; отсутствие заклинивания вальцов (при вращении их вручную); крепление резьбовых и других соединений; правильность установки и равномерность рабочего зазора между приваленными неподвижными вальцами на расстоянии 50…70 мм от их торцов; перемещение очистителей вальцов при привале-отвале; состояние приводных ремней.

При работе вальцового станка под нагрузкой проверяют: работу привала привально-отвального механизма от пневмопереключателя, от системы местного и дистанционного управления, в автоматическом режиме; блокировку включения питающих валков и перемещения заслонки; нагрев подшипников (температура не более 60 °С); работу электросхемы и аппаратуры; подачу воды; работу подводящих и отводящих коммуникаций и транспортных устройств.

Настройка и оперативное регулирование режима размола каждой половины станка под нагрузкой сводится в основном к регулированию системы питания и рабочего зазора между мелющими вальцами.

У станков, имеющих в механизме питания редуктор, устанавливают вначале минимальную скорость дозирующего валка и далее подбирают оптимальную скорость вращения. Не допускается переключение скоростей на ходу.

В соответствии с распределением нагрузок по технологическим системам с помощью регулятора вручную устанавливают минимальную величину питающего зазора между заслонкой и дозирующим валком: на драных системах – 0,35 мм, на размольных – 0,15 мм. Максимальный питающий зазор, устанавливаемый ограничительным винтом, должен обеспечивать верхний предел подачи исходного продукта, при котором токовая нагрузка электродвигателя по показаниям амперметра не превышала бы 80 % номинальной. Если это условие не соблюдается, то питающий зазор должен быть уменьшен.

Регулирование системы питания и рабочего зазора следует проводить с постоянным контролем нагрузки электродвигателя, а также подводящих и oтвoдящих транспортных систем.

На станках размольных систем визуально проверяют равномерность распределения продукта по длине распределительного валка. На каждой половине вальцового станка проверяют извлечение, которое должно соответствовать действующим правилам.

При настройке режима размола проверяют чувствительность автоматической системы регулирования подачи исходного зерна в установленном диапазоне, расположение конуса продукта в приемной трубе относительно чувствительного элемента сигнализатора уровня.

После настройки режима размола должны быть затянуты контровочные устройства органов регулирования. В дальнейшем для данной помольной партии не следует корректировать режим помола, который должен обеспечивать стабильные результаты в течение длительного времени.

Отличительные особенности вальцовых станков типа А1-БЗН от ранее выпущенных отечественных моделей следующие:

– изготовление пустотелых вальцов снижает металлоемкость станков; улучшение условия питания;

– наличие водяного охлаждения быстровращающихся вальцов создает стабильный тепловой режим в зоне измельчения, что благоприятно сказывается на количественно-качественных показателях процесса измельчения, одновременно охлаждаются подшипники;

– совокупность конструктивных особенностей, высокая точность обработки, применение износостойкого рабочего слоя вальцов существенно повышают их долговечность: рифленых – до трех лет, гладких – до десяти лет;

– автоматическая система привала-отвала нижнего вальца сблокирована с системой управления подачей исходного продукта, что позволяет дистанционно управлять станком, обеспечивая стабильность и надежность его работы;

– применение конической посадки подшипников позволяет производить их демонтаж гидравлическим съемником. Наличие горизонтального разъема в корпусе подшипников дает возможность снимать его вместе с подшипниками. Значительно снижается трудоемкость этой операции;

– специфика каждой технологической системы максимально учтена в формах исполнения вальцовых станков с большим количеством переменных параметров;

– наличие трех моделей вальцовых станков: А1-БЗН, А1-БЗ-2Н и А1-БЗ-ЗН – повышает их универсальность и расширяет область использования.

Техническая характеристика станков типа А1-БЗН

Производительность, т/сут…………………………………………… 84

Расход воды на охлаждение половины станка, м 3 /ч,

не более……………………………………………………………………. 0,3

Частота вращения быстровращающихся вальцов, мин –1:

рифленых……………………………………………………………. 420…460

гладких……………………………………………………………….. 395…415

Давление сжатого воздуха, МПа…………………………………… 0,5

Расход воздуха на аспирацию для вальцового станка

А1-БЗ-2Н, м 3 /мин, не более………………………………………… 10

Расход воздуха на пневмотранспорт для половины

вальцового станка А1-БЗ-ЗН, м 3 /мин, не более…………….. 27

Мощность электродвигателей, кВт, для систем:

I драной………………………………………………………………. 18,5

II драной, 1-й и 2-й размольных……………………………. 15

III драной, 1-й и 2-й шлифовочных, 3, 4, 6, 8, 9, 10-й

размольных………………………………………………………………. 11

IV драной, 5…12-й размольных…………………………….. 7,5

Габаритные размеры, мм, не более………………………………… 1800´1700´1400

Масса, кг (без электропривода, капотов и

электроаппаратуры)…………………………………………………… 2700


Вальцовые станки А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н, предназначены для измельчения зерна и промежуточных продуктов размола пшеницы и применяются в составе комплекта оборудования на мукомольных предприятиях с увеличенным выходом муки высших сортов.

Скачать перечень запасных частей станка А1-БЗН, А1-БЗ-2Н, А1-БЗ-ЗН
В зависимости от технологического назначения рабочая поверхность мелющих вальцов выполняется рифленой или гладкой. Конструкцией станков предусмотрено водяное охлаждение быстровращающихся мелющих вальцов и возможность перенарезки рифлей без демонтажа подшипников.
Дистанционное управление привалом и отвалом мелющих вальцов позволяет стабилизировать режим помола и практически устраняет вмешательство обслуживающего персонала в работу вальцовых станков.

Вальцовый станок типа А1 – БЗН – это наиболее распространённая измельчающая машина российских мукомольных заводов. В зависимости от модификации и формы исполнения станки могут отличаться друг от друга. Основными отличительными признаками станков типа А1 – БЗН является расположение привода под межэтажным перекрытием или на том же этаже, где расположен станок; способ вывода измельчённого продукта - с нижним забором – самотёком и верхним забором – в стояки пневмотранспортных установок; рельеф поверхности вальцов - с рифлями или микрошероховатостью; тип применяемого сигнализатора уровня и др. Вальцовый станок типа А1-БЗ-2Н имеет две пары мелящих вальцов, расположенных наклонно (под углом 300) к горизонту. Длина вальцов 1000 мм, а диаметр бочки 250 мм. Вальцы имеют водяное охлаждение с полной или частичной рециркуляцией. Очистка вальцов от налипшего продукта осуществляется или ножом для микрошероховатых вальцов, или щёткой для рифленых. Измельчённый продукт выводятся из станка через выпускное устройство, включающее бункер или пневмоприёмник. Привод быстровращающегося вальца осуществляется от электродвигателя через клиноремённую передачу, а медленновращающегося вальца осуществляется от быстровращающегося через косозубую передачу, обеспечивающую отношение окружных скоростей 1,25 или 2,5. Управление механизмами регулирования межвальцового зазора и выведено на переднюю панель. При этом привал и отвал вальцов может осуществляться как вручную, так и в автоматическом режиме. Для реализации последнего служит сигнализатор уровня, блок питания и преобразования сигналов, исполнительный механизм – пневмоцилиндр, управляемый электромагнитным клапаном. Питание продуктом каждой половины станка автономное.


Технические характеристики А1-БЗН А1-БЗ-2Н А1-БЗ-3Н
Производительность, т/сут 168 168 168
Установленная мощность (на 1/2 станка), кВт 7,5 - 18,5 7,5 - 18,5 7,5 - 18,5
Размеры мелющих вальцов, мм: диаметр/длина 250/1000 (800,600) 250/1000 (800,600) 250/1000
Расход воды на охлаждение м 3 /час, не более 0,6 0,6 0,6
Габаритные размеры, без электроприводов, мм: (ДxШxВ) 1700x1700x1400 1700x1700x1400 1700x1700x1400
Масса, кг, не более 2700 2700 2700

← Вернуться

×
Вступай в сообщество «nloeda.ru»!
ВКонтакте:
Я уже подписан на сообщество «nloeda.ru»